Code: 20EC3402

II B.Tech - II Semester - Regular Examinations - JULY 2022

COMMUNICATION THEORY (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

<u>UNIT – I</u>

1. a) Explain the detection of DSB signals using COSTAS Loop.

7 M

b) When a signal $m(t) = 3 \cos(2\pi \times 10^3 t)$ modulates a carrier $c(t) = 5 \cos(\pi \times 10^6 t)$, find the modulation index and transmission bandwidth if the modulation is AM.

7 M

OR

2. a) Discuss the generation of SSB signal using balanced modulator and phase shifter.

7 M

b) Obtain a relationship between carrier and side band powers in an SSBSC wave and explain how power distribution takes place in SSBSC system.

7 M

UNIT – II

3. a) Describe the principle of Angle Modulation. Derive and explain phase deviation, Modulation index, frequency deviation and percentage of modulation.

7 M

	b)	With a neat block diagram explain the Armstrong method of FM generation. OR	7 M
4.	a)	An angle modulated signal is represented in time domain as $s(t) = 10 \cos(2\pi 10^6 t + 3 \sin 2\pi 10^3 t)$. Assuming the given signal as PM, i) Calculate the frequency deviation, modulation index, B.W. and power. ii) Repeat the above calculations when the message frequency is doubled.	7 M
	b)	Draw the balanced frequency discriminator and discuss the process of detection of FM waves.	7 M
		UNIT-III	
5.	a)	State and prove the central limit theorem.	7 M
	b)	Consider two random processes $X(t) = A\cos\omega_0 t + B\sin\omega_0 t$ and $Y(t) = B\cos\omega_0 t - A\sin\omega_0 t$, both A and B are independent random variables having zero mean and same variance. Determine $E[X(t)]$, $E[Y(t)]$ and cross correlation function $E[X(t_1)Y(t_2)]$.	7 M
		OR	
6.	a)	State and prove, any three properties of Auto Correlation function.	7 M
	b)	A continuous random variable is uniformly distributed in the interval -2 to 10. Determine the statistical average.	7 M

$\underline{UNIT-IV}$

7.	a)	Derive the expression for the figure of merit of DSBSC	
		receiver that uses coherent detection.	7 M
	b)	Explain in detail about Amplitude modulation Receiver	
		Model.	7 M
		OR	
8.	a)	Discuss the threshold effect for AM with envelope	
		detector.	7 M
	b)	Discuss in detail about pre-emphasis and de-emphasis	
		in FM.	7 M
		$\underline{\mathbf{UNIT} - \mathbf{V}}$	
9.	a)	Explain the PPM generation from PWM, with a neat	
		block diagram and necessary figures.	7 M
	b)	State and prove sampling theorem for low pass signals.	
		Sketch the spectrum of sampled signal at	
		(i) $f_s=2f_m$; (ii) $f_s>2f_m$ and (iii) $f_s<2f_m$	7 M
		OR	
10.	a)	For a PAM transmission of voice signal having	
		maximum frequency $f_m = 3KHz$. The sampling	
		frequency $f_s = 8KHz$ and the pulse duration $\tau = 0.1T_s$.	
		Calculate the transmission bandwidth.	7 M
	b)	Compare PAM, PWM and PPM systems.	7 M